小扎亲自官宣Meta视觉大模型!自监督学习无需微调 环球今日讯
腾讯网 2023-04-18 19:40:18

萧箫 发自 凹非寺

量子位 | 公众号 QbitAI


(相关资料图)

无需文字标签,完全自监督的Meta视觉大模型来了!

小扎亲自官宣,发布即收获大量关注度——

在语义分割、实例分割、深度估计和图像检索等任务中,这个名叫DINOv2的视觉大模型均取得了非常不错的效果。

甚至有超过当前最好的开源视觉模型OpenCLIP之势。

虽然此前Meta就发布过自监督学习视觉大模型DINO,不过这次AI识别图像特征的能力显然更进一步,准确分割出了视频中的主体:

可别以为DINOv2通过自监督学会的只有图片分割。事实上,它已经能根据不同类别、不同场景下的照片,准确识别出同种物体(狗)的头部、身体和四肢长在哪:

换而言之,DINOv2自己学会了找图像特征。

目前Meta官方不仅已经放出了开源代码,而且还给了网页版Demo试玩。有网友内涵:

什么叫开源,LLaMA,SAM,DINOv2这才叫开源!

一起来看看,DINOv2的效果究竟如何。

准确识别不同画风的同种物体

事实上,DINOv2是基于上一代DINOv1打造的视觉大模型。

这个模型参数量是10亿级,也仍然是视觉Transformer架构(ViT),但与DINO不太一样的是,这次DINOv2在数据集上经过了精心挑选。

具体来说,DINOv2构建了一个数据筛选pipeline,将内容相似的图片精心筛选出来,同时排除掉相同的图片:

最终呈现给DINOv2的训练数据图片虽然没有文字标签,但这些图片的特征确实是相似的。

采用这类数据训练出来的视觉模型,效果如何?

这是DINOv2在8个视觉任务上的表现,包括语义分割、分类、深度估计等,其中橙色是自监督方法的效果,深粉色是弱监督方法的效果。

可以看见,经过自监督学习的视觉模型,表现上已经与经过弱监督学习的模型性能相当。

实际效果也不错,即便在一系列照片中,相同物体的画风并不相似,DINOv2也能准确识别它们的特征,并分到相似的列表中。

如(a)组中都具有翅膀的鸟和飞机、(b)组中的大象和大象雕塑、(c)组中的汽车和汽车玩具模型、(d)组中的马和涂鸦版马:

而且从PCA(主成分分析)图像效果来看,DINOv2不仅能准确分类,还能用不同颜色标出它们“相同”的部分,例如象鼻都是绿色、车轮都是红色、马的尾巴是黄色等。

换而言之,DINOv2能理解这些图像中的相似之处,就像人会形容飞机“看起来像一只鸟”一样。

目前DINOv2已经放出Demo,我们也试了试它的实际效果。

Demo直接可玩

官网已经开放语义分割、图像检索和深度估计三大功能的试玩。

据Meta介绍,这几个任务中,DINOv2在大多数基准上超过了目前开源视觉模型中表现最好的OpenCLIP。

我们先来看看深度估计的效果。

值得一提的是,在效果更好的情况下,DINOv2运行的速度也比iBOT更快,相同硬件下只需三分之一的内存,运行速度就能比DINOv2快上2倍多。

这是Meta论文中与OpenCLIP在实际例子上的比较效果:

我们用这张猛男版新宝岛试一下,看起来还不错,即使是高糊图片也能比较好地估计出深度:

接下来是语义分割的效果,这里也先给出Meta论文中的数据对比情况:

这里也给出OpenCLIP和DINOv2的对比,中间的图片是OpenCLIP的效果,右边是DINOv2分割的效果:

我们也用一张办公室的图片试了一下,看起来DINOv2还是能比较准确地分割人体、物体的,但在细节上会有一些噪点:

最后是图片检索

官网上给出的图片效果还是挺不错的,输入铁塔照片,可以生成不少含铁塔的相似艺术图片:

这里我们也试了试,输入一张华强买瓜,给出来的艺术图片大多数与西瓜有关:

那么,这样的自监督视觉大模型可以用在哪里?

从Meta给出的视频来看,目前有一些比较环保的用途,例如用于估计全球各地的树木高度:

除此之外,如同扎克伯格所说,DINOv2还能被用于改善医学成像、粮食作物生长等。当然这里小扎还进一步强调:

可以被用于制作更具沉浸感的元宇宙。

嗯,看来Meta的元宇宙路线还将继续…

小扎亲自官宣Meta视觉大模型!自监督学习无需微调 环球今日讯

2023-04-18

银联云闪付的特点有哪些(银联云闪付有什么弊端)|每日动态

2023-04-18

头条:深圳网红盘1.07亿天价起拍

2023-04-18

环球热头条丨苏丹侨胞亲历武装冲突:猝不及防的枪声

2023-04-18

全球聚焦:韦尔股份:一季度净利润同比下降77.81%

2023-04-18

【天天播资讯】巴彦淖尔到福州物流专线 福州专线运输 双向往返/整车零担/准时到达

2023-04-18

世界观速讯丨刚刚,国家统计局发布!

2023-04-18

研究:美国财富不平等越发极端 亿万富翁财富比疫情初期增加1/3|时讯

2023-04-18

幽鬼丸的音乐_火影忍者中幽鬼丸草笛声 天天观焦点

2023-04-18

为什么 Apple 从未添加收音机调谐器应用程序 环球热消息

2023-04-18

合同的情势变更指的是什么?情势变更的构成要件和法律后果是什么?_全球观焦点

2023-04-18

【报资讯】caring about(caring)

2023-04-18

国际人才企业需求及成长环境研讨交流会在京举行 焦点速递

2023-04-18

快讯:重庆綦江:夕阳西下映余晖

2023-04-18

今日精选:当日快讯:俄技集团:为俄国产战斗机研发出通信系统电子元件

2023-04-18

热文:当日快讯:上汽集团:未来三年飞凡 荣威 MG将发布13款以上新能源产品

2023-04-18

当前动态:怎样选墓地及注意事项_选墓地的方法

2023-04-18

研究思考丨关于软件复杂度的困局-全球快报

2023-04-18

值得买:将AIGC列为年度重点的战略项目,已与一些大模型公司达成合作关系 世界观速讯

2023-04-18

便宜好吃,淄博烧烤之外,美食还有它

2023-04-18